in Quantitative Aptitude edited by
268 views
1 vote
1 vote
Let $f$ be a function such that $f (mn) = f (m) f (n)$ for every positive integers $m$
and $n$. If $f (1), f (2)$ and $f (3)$ are positive integers, $f (1) < f (2),$ and $f (24) = 54$, then $f
(18)$ equals _______
in Quantitative Aptitude edited by
13.4k points
268 views

1 Answer

1 vote
1 vote
Given that, $ f(mn) = f(m) f(n) \quad \longrightarrow (1)$

And, $ f(24) = 54 $

$ \Rightarrow f (2 \ast 12) =54$

$ \Rightarrow f(2) f(12) =54$

$ \Rightarrow f(2) f(2*6) =54$

$ \Rightarrow f(2) f(2) f(6) =54$

$ \Rightarrow f(2) f(2) f(2\ast 3) = 54$

$ \Rightarrow f(2) f(2) f(2) f(3) = 54$

$ \Rightarrow \left( {f(2)} \right)^{3} f(3) = 3^{3} \times 2$

On comparing both sides, we get

$ \boxed {f(2) = 3, f(3) = 2}$

Therefore, $f(18) = f(2*9) = f(2) f(9)$

$\qquad \qquad = f(2) f(3*3) = f(2) f(3) f(3)$

$\qquad \qquad = 3\ast 2\ast 2 =12 $

Correct Answer $: 12$
edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true