in Quantitative Aptitude edited by
254 views
1 vote
1 vote
If $(2n+1)+(2n+3)+(2n+5)+\dots+(2n+47)=5280,$ then what is the value of $1+2+3+\dots+n$ _______
in Quantitative Aptitude edited by
13.4k points
254 views

1 Answer

1 vote
1 vote
Given that, $ (2n+1) + (2n+3) + (2n+5)+ \dots + (2n+47) = 5280$

Here, the first term $a = 2n+1$

And, common difference $d = (2n+3) – (2n+1)$

$\Rightarrow d =  2n+3-2n-1 = 2 $

Let $’x’$ be the number of terms.

The last term $l=a+(x-1)d$

$ \Rightarrow 2n+47 =2n+1+(x-1)2$

$ \Rightarrow 47=1+2x-2$

$ \Rightarrow 2x =48$

$ \Rightarrow \boxed {x=24}$

Now, the sum of A.P. $= \frac {x}{2} \left [ {a+l} \right]$

$ \Rightarrow 5280 = \frac {24}{2} \left [{2n+1+2n+47 } \right] $

$ \Rightarrow 12(4n +48) = 5280 $

$ \Rightarrow 12 \times 4 (n+12) =5280$

$ \Rightarrow 48 (n+12) =5280 $

$ \Rightarrow n+12 = \frac {5280}{48} $

$ \Rightarrow n+12=110$

$ \Rightarrow \boxed {n=98}$

Now, the value of $1+2+3+ \dots +98$

$ \quad = \frac {98}{2} \left [{1+98} \right]$

$ \quad = 49 \times 99 = 4851.$

Correct Answer $:4851$
edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true