in Quantitative Aptitude edited by
1 vote
1 vote
Let $\text{A}$ and $\text{B}$ be two regular polygons having $\text{A}$ and $\text{B}$ sides, respectively. If $b= 2a$ and each interior angle of $\text{B}$ is $3/2$ times each interior angle of  $\text{A}$, then each interior angle, in degrees, of a regular polygon with $a + b$ sides is ________
in Quantitative Aptitude edited by
13.4k points

1 Answer

1 vote
1 vote
Ans should be  ($150$)

For a regular polygon with $n$ sides, each internal angle is given by $(n-2)\times \frac{180^{\circ}}{n}$

$\therefore$  Given  $\angle B=\frac{3}{2}\times \angle A$

$\Rightarrow$   $(b-2)\times \frac{180^{\circ}}{b}=\frac{3}{2}\times (a-2)\times \frac{180^{\circ}}{a}$

$\therefore$  $2a-2=3a-6$   $\Rightarrow$   $a=4$  (using b=2a condition)

Hence, $b=2a=8$ . Polygon of  $a+b=12$  sides will have an internal angle  $=(12-2)\times \frac{180^{\circ}}{12}=150^{\circ}$
658 points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true