in Quantitative Aptitude retagged by
299 views
1 vote
1 vote

The number of common terms in the two sequences: $15, 19, 23, 27,\dots,415$ and $14, 19, 24, 29,\dots,464$ is

  1. $18$
  2. $19$
  3. $21$
  4. $20$
in Quantitative Aptitude retagged by
13.4k points
299 views

1 Answer

1 vote
1 vote

Given that,

  • $15,{\color{Red}{19}},23,27,31,35,{\color{Red}{39}},\dots, 415 \quad \longrightarrow (1)$
  • $14,{\color{Red}{19}},24,29,34,{\color{Red}{39}}, \dots ,464 \quad \longrightarrow (2)$

Let $’n’$ be a number of common terms in the two sequences.

Common difference in sequence $1 = 4,$ and in sequence $2 = 5.$

$\therefore$ The LCM of $(4,5)=20\quad $ (Common difference of new sequnce)

Now, the sequence will be,

$19,39,59,79,99,\dots , l \left(\leqslant 415\right) \quad \longrightarrow (3)$

We know that, last term $l=a+(n-1)d ,$ where $a = $ first term, $d = $ common difference, $n = $ number of terms.

Now, $l \leqslant 415$

$\Rightarrow 19+(n-1)20 \leqslant 415\quad [\because a  =19,d = 20]$

$\Rightarrow 19+20n-20 \leqslant 415$

$\Rightarrow 20n-1 \leqslant 415$

$\Rightarrow 20n \leqslant 416$

$\Rightarrow n \leqslant \frac{416}{20}$

$ \Rightarrow n \leqslant 20.8$

$\Rightarrow \boxed{n=20}$

Correct Answer: D

10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true