in Quantitative Aptitude edited by
176 views
2 votes
On a long stretch of east-west road, $A$ and $B$ are two points such that $B$ is $350$ km west of $A$. One car starts from $A$ and another from $B$ at the same time. If they move towards each other, then they meet after $1$ hour. If they both move towards east, then they meet in $7$ hrs. The difference between their speeds, in km per hour, is
in Quantitative Aptitude edited by
by
12.8k points 250 1881 2459
176 views

1 comment

50
0

1 Answer

1 vote

Given that, $A$ and $B$ are two points such that $B$ is $350 \; \text{km}$ of $A.$

Let $`x\text{’}$ and $`y\text{’}$ be the speed $(\text{in km/hr})$ of cars starting from both $A$ and $B$ respectively.

Let us assume $\text{car 2}$ traveled $ d\;\text{km}$ and meet $\text{car 1},$ after $1 \; \text{hour}.$ 

$\boxed{\text{Speed} = \frac{\text{Distance}}{\text{Time}}}$

So, $ S_{\text{car 1}} = \frac{350-d}{1} $

$\Rightarrow \boxed{x = 350 – d} \quad \longrightarrow (1) $

And, $ S_{\text{car 2}} = \frac{d}{1} $

$ \Rightarrow \boxed {y = d} $

From the equation $(1),$ we get

$ x = 350 – d $

$ \Rightarrow x = 350 – y $

$\Rightarrow \boxed{x+y = 350} \quad \longrightarrow (2) $

Let us assume, when they move toward east, they meet at point $P$ and distance traveled by $\text{car 1}$ is $`p\text{’} \; \text{km},$ and distance traveled by $\text{car 2}$ is $`350+p\text{’} \; \text{km}$ in $7 \; \text{hours}.$

So, $S_{\text{car 1}} = \text{p}{7} $

$ \Rightarrow x = \frac{p}{7} $

$ \Rightarrow \boxed{p = 7x} \quad \longrightarrow (3) $

And, $S_{\text{car 2}} = \frac{350+p}{7} $

$ \Rightarrow y = \frac{350+7x}{7} \quad [\because \text{From equation} (3)] $

$ \Rightarrow 7y = 350 + 7x $

$ \Rightarrow 7y – 7x = 350 $

$ \Rightarrow 7(y – x)  = 350 $

$ \Rightarrow y –  x = \frac{350}{7} $

$ \Rightarrow \boxed{y – x = 50 \; \text{km/hr}} $

$\textbf{PS:}$ If they both move in east direction, then $B$ will overtake $A$ only if $y>x.$


$\textbf{Short Method: }$

Concept of relative speed ;

  • When  two bodies moves in the same direction then the $ \boxed{\text{Relative speed = Difference of speeds}} $
  • When two bodies move in opposite direction, then the $ \boxed { \text {Relative speed = Sum of speeds}} $

Let $`x\text{’}$ and $`y\text{’}$ be the speed ( in km/hr) of cars starting from both $A$ and $B$ respectively.

$\text{Relative speed} = (y – x) \; \text{km/hr} \quad [\because y > x] $

They travel $350 \; \text{km}$ in $7 \; \text{hours}$ with a relative speed of $(y – x) \; \text{km/hr}.$

So, $(y -x) = \frac{350}{7} $

$ \Rightarrow \boxed{ y – x = 50 \; \text{km/hr}} $

Correct Answer $: 50$

edited by
by
4k points 3 6 24
Answer:

Related questions

2 votes
1 answer
1
jothee asked in Quantitative Aptitude Mar 20, 2020
179 views
jothee asked in Quantitative Aptitude Mar 20, 2020
by jothee
12.8k points 250 1881 2459
179 views
Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true