in Quantitative Aptitude edited by
144 views
2 votes
Let $f\left (x  \right ) = \max\left \{5x, 52 – 2x^{2}\right \}$ , where $x$ is any positive real numbers. Then the minimum possible value of $f(x)$ is
in Quantitative Aptitude edited by
by
12.8k points 250 1881 2459
144 views

1 Answer

1 vote

Given that, $ f(x) = \max \{ 5x, 52-2x^{2} \} \quad \longrightarrow (1) $

And, $x$ is a positive real number.

The minimum value occurs when both the graphs intersect.

  • Let $ y_{1} = 5x \quad \longrightarrow (2) $
  • And, $ y_{2} = 52 – 2x^{2} \quad \longrightarrow (3) $

From equation $(2),$

$ y_{1} = 5x$ is an equation of line.

$ y = mx+c\,,$ where $m =$ slope of the line , $c =$ intercept on the $y$ – axis.


From equation $(3),$

$ y_{2} = 52 – 2x^{2}$ is a quadractic equation.

$ y_{2} = 0 \Rightarrow x = \sqrt{26} = \pm 5 \cdot 09 $

$ x = 0 \Rightarrow y_{2} = 52 $


Now, combine both graphs, we get


From the above graph,

$ 5x = 52 – 2x^{2} $

$ \Rightarrow – 2x^{2} + 52 – 5x = 0 $

$ \Rightarrow 2x^{2} + 5x – 52 = 0 $

$ \Rightarrow 2x^{2} + 13x – 8x – 52 = 0 $

$ \Rightarrow x( 2x+13) – 4(2x+13) = 0 $

$ \Rightarrow (2x+13) (x-4) = 0 $

$ \Rightarrow 2x+13 = o , x-4 = 0 $

$ \Rightarrow \boxed{x = \frac{-13}{4}} ,  \boxed{x=4}$

Since, $x$ is positive real number, so we take $x = 4.$

Now, from equation $(1),$

$ f(x) = \max \{ 5(4), 52 – 2(4)^{2} \}$

$ \Rightarrow f(x) = \max \{ 20, 52 – 32 \} $

$ \Rightarrow f(x) = \max \{ 20, 20 \} $

$ \Rightarrow \boxed{f(x) = 20} $

$\therefore$ The minimum possible value of $f(x)$ is $20.$

Correct Answer $: 20 $

edited by
by
4k points 3 6 24
Answer:

Related questions

2 votes
1 answer
1
jothee asked in Quantitative Aptitude Mar 20, 2020
179 views
jothee asked in Quantitative Aptitude Mar 20, 2020
by jothee
12.8k points 250 1881 2459
179 views
Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true