in Quantitative Aptitude edited by
135 views
2 votes
If $a$ and $b$ are integers such that $2x^{2}- ax + 2 > 0$ and $x^{2}-bx+8 \geq 0$ for all real numbers $x$, then the largest possible value of $2a-6b$ is
in Quantitative Aptitude edited by
by
12.8k points 250 1881 2459
135 views

1 Answer

1 vote

Given that,

  • $ 2x^{2} – ax + 2 > 0 \quad \longrightarrow (1) $
  • $ x^{2} – bx + 8 \geqslant 0 \quad \longrightarrow (2) $

For any quadratic equation $ax^{2} + bx + c > 0 $
If $a$ is greater than zero then this means that the quadratic equation will always be above $x\text{-axis}$ and will never intersect it at any real value of $x.$ Thus the solutions to this equation will be imaginary.



So, here discriminant $\boxed{\text{D<0}}$

$ \Rightarrow \boxed{ b^{2} – 4ac < 0} $

On the other hand for an inequality $ ax^{2} + bx + c < 0 $ for $a < 0$ the expression will always be below the $x\text{-axis}.$Similarly, the solutions will be imaginary.



So, here discriminant $\boxed{D<0}$

$ \Rightarrow \boxed{b^{2} – 4ac} $

For the equation $(1),$ graph will be :



Here, $\boxed{\text{D}<0}$

$ \Rightarrow \boxed{ b^{2} – 4ac < 0} $

$ \Rightarrow (-a)^{2} – 4(2)(2) < 0 $

$ \Rightarrow a^{2} – 16 < 0 $

$ \Rightarrow a^{2} < 16 $

$ \Rightarrow \boxed{ -4 < a < 4} $

For the equation $(2),$ graph will be



In this case, the graph can touch $x – \text{axis}$, so it can have at most one root.

Thus discriminant $\boxed{\text{D} \leqslant 0} $

$ \Rightarrow \boxed{ b^{2} – 4ac \leqslant 0}$

$ \Rightarrow (-b)^{2} – 4(1)(8) \leq 0$

$ \Rightarrow b^{2} – 32 \leq 0$

$ \Rightarrow b^{2} \leq 32 $

$ \Rightarrow b \leq \sqrt{32} $

$ \Rightarrow b \leq \sqrt{16 \times 2} $

$ \Rightarrow \boxed{-4\sqrt{2} \leqslant b \leqslant 4 \sqrt{2}} $

As $b$ is an integer.

So, $\boxed{ -5 \leqslant b \leqslant 5} $

For the largest value of $ 2a – 6b,$ we can take $a = 3,$ and $b = -5.$

$\therefore$ The largest possible value of $ 2a – 6b = 2(3) – 6(-5)  = 6 + 30  = 36.$

Correct Answer $:36$

$\textbf{PS :}$ For equation $ax^{2} + bx + c = 0,$ expression $b^{2} – 4ac$ is called discriminant and denoted by $\text{D}.$

$\begin{array}{cl|l}\hline &  \textbf{Value of discrimimant} & \textbf{Nature of roots}\\\hline 1. & D<0 & \text{Unequal and imaginary}\\ 2. & D = 0 & \text{Real and equal}\\ 3. & D>0, \;\text{and is a perfect square} & \text{Real, unequal, and rational}\\ 4. & D>0,\;\text{and not a perfect square} & \text{Real. unequal, and irrational}\\\hline \end{array}$

Reference: https://brilliant.org/wiki/jee-quadratic-roots/

edited by
by
4k points 3 6 24
Answer:

Related questions

2 votes
1 answer
1
jothee asked in Quantitative Aptitude Mar 20, 2020
179 views
jothee asked in Quantitative Aptitude Mar 20, 2020
by jothee
12.8k points 250 1881 2459
179 views
Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true