retagged by
802 views

2 Answers

1 votes
1 votes
Let $x$ and $y$ be the two numbers.

$ x^{2} + y^{2} = 97 \quad \longrightarrow (1) $

The geometric mean cannot exceed the arithmetic mean.  $ \boxed{ \text{AM} \geqslant \text{GM}} $

$ \Rightarrow \boxed{\frac{a_{1} + a_{2}  + \dots + a_{n} } {n} \geqslant \sqrt[n]{a_{1} a_{2} \dots a_{n}}} $

Now$, \frac{x^{2} + y^{2}}{2} \geqslant \sqrt{x^{2} \cdot y^{2}} $

$ \Rightarrow \frac{x^{2} + y^{2}}{2} \geqslant \sqrt{(xy)^{2}} $

$ \Rightarrow \frac{x^{2} + y^{2}}{2} \geqslant xy $

$ \Rightarrow x^{2} + y^{2} \geqslant 2xy $

$ \Rightarrow 97 \geqslant 2xy \quad [\because \text{From equation (1)}]$

$ \Rightarrow 2xy \leqslant 97 $

$ \Rightarrow xy \leqslant \frac{97}{2} $

$ \Rightarrow \boxed{xy \leqslant 48. 5}$

So$,xy$ cannot be more than $48. 5.$

$\therefore$ Only option $\text{(C)}$ not possible.

Correct Answer $: \text{C}$
edited by
0 votes
0 votes
$\textrm{Let a,b are those number.}$

$\Rightarrow$ $a^2+b^2=97$

$\Rightarrow$ $a^2+b^2-2ab=97-2ab$  $\textrm{(adding -2ab in both side)}$

$\Rightarrow$ $(a-b)^2=97-2ab$

$\Rightarrow$ $\textrm{97-2ab $\geq$=0}$

$\Rightarrow$ $\textrm{ab$\leq48.5$}$

$\textrm{Hence ab $\neq$64,Option 3}$
Answer:

Related questions

3 votes
3 votes
1 answer
1
go_editor asked Mar 20, 2020
726 views
How many two-digit numbers, with a non-zero digit in the units place, are there which are more than thrice the number formed by interchanging the positions of its digits?...
2 votes
2 votes
1 answer
2
go_editor asked Mar 20, 2020
807 views
The smallest integer $n$ such that $n^{3} - 11n^{2} + 32n - 28 >0$ is
2 votes
2 votes
1 answer
3
go_editor asked Mar 20, 2020
678 views
If $\text{N}$ and $x$ are positive integers such that $\text{N}^{\text{N}}=2^{160}$ and $\text{N}^{2} + 2^{\text{N}}$ is an integral multiple of $2^{x}$, then the largest...
2 votes
2 votes
1 answer
4
go_editor asked Mar 20, 2020
600 views
Let $t_{1}, t_{2},\dots$ be a real numbers such that $t_{1}+t_{2}+\dots+t_{n}=2n^{2}+9n+13$, for every positive integers $n\geq2$.If $t_{k}=103$ , then $k$ equals