in Quantitative Aptitude edited by
127 views
2 votes

The smallest integer $n$  for which $4^{n}>17^{19}$ holds, is closest to

  1. $33$
  2. $37$
  3. $39$
  4. $35$
in Quantitative Aptitude edited by
by
12.8k points 250 1881 2459
127 views

1 Answer

1 vote

Given that,

$ 4^{n}  > 17^{19} $

Taking the $ \log_{10}$ both sides.

$ \log_{10}4^{n} > \log_{10} 17^{19} $

$ \Rightarrow n \log_{10}4 > 19 \log_{10}17 \quad [ \because \log_{b}a^{x} = x \log_{b}a] $

$ \Rightarrow n > 19 \left( \frac{\log_{10}17}{ \log_{10}4} \right) $

$ \Rightarrow n > 19 ( \log_{4}17) \quad \left[ \because \log_{b}a = \frac{ \log_{x}a}{ \log_{x}b} \right] $

For easy calculation, let us assume $17 \approx 16.$

Now, $ n > 19 ( \log_{4} 16)$

$ \Rightarrow n > 19 ( \log_{4} 4^{2})$

$ \Rightarrow n > 19 \times 2 ( \log_{4}4)$

$ \Rightarrow \boxed{n >38} \quad [ \because \log_{a}a = 1 ] $

$ \Rightarrow \boxed{n \simeq 39} $

$\therefore$ The small integer $n$ is closed to $39.$


$\textbf{Short Method :}$

Given that, $ 4^{n} > 17^{19} $

$ \Rightarrow \left( 4^{2} \right)^{\frac{n}{2}} > 17^{19} $

$ \Rightarrow (16)^{\frac{n}{2}} > 17^{19} $

Here, $ 16 < 17 ,$ so $ \frac{n}{2}$ must be greater than $19.$

Thus, $ \frac{n}{2} > 19 $

$ \Rightarrow n > 38 $

$ \Rightarrow \boxed{n \simeq 39} $

Correct Answer $:\text{C}$

edited by
by
4k points 3 6 24
Answer:

Related questions

2 votes
1 answer
3
jothee asked in Quantitative Aptitude Mar 20, 2020
179 views
jothee asked in Quantitative Aptitude Mar 20, 2020
by jothee
12.8k points 250 1881 2459
179 views
Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true