in Quantitative Aptitude retagged by
217 views
2 votes
2 votes

If $\log_2(5+\log_3a)=3$ and $\log_5(4a+12+\log_2b)=3$, then $a+b$ is equal to

  1. $67$
  2. $40$
  3. $32$
  4. $59$
in Quantitative Aptitude retagged by
13.4k points
217 views

1 Answer

1 vote
1 vote

Given that,

  • $ \log_{2} (5+ \log_{3} {a}) = 3 \quad \longrightarrow (1)$
  • $ \log_{5} ( 4a + 12) = 3 \quad \longrightarrow (2)$

From equation $(1),$

$\log_{2} (5 + \log_{3}{a}) = 3$

$ \Rightarrow 5 + \log_{3}{a} = 2^{3}$ $ \quad [ \because {\log_{a}{b}} = x \Rightarrow b = a^{x}]$

$ \Rightarrow \log_{3}{a} = 3$

$ \Rightarrow a = 3^{3}$

$ \Rightarrow \boxed {a = 27} $

From equation $(2),$

$ \log_{5} (4a + 12 + \log_{2}{b}) = 3 $

$ \Rightarrow 4a + 12 +\log_{2}{b} = 5^{3}$

$ \Rightarrow 4(27) + 12 + \log_{2}{b} = 125 $

$ \Rightarrow 108 + 12 + \log_{2}{b} = 125 $

$ \Rightarrow 120 + \log_{2}{b} = 125 $

$ \Rightarrow \log_{2}{b} = 125 – 120 $

$ \Rightarrow \log_{2}{b} = 5 $

$ \Rightarrow b = 2^{5}$

$ \Rightarrow \boxed {b = 32} $

$ \therefore$ The value of $ a+b = 27 + 32 = 59 $

Correct Answer $: \text {D}$

edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true