in Quantitative Aptitude retagged by
217 views
2 votes
2 votes

$\log_{12}81=p$, then $3\bigg (\frac{4-p}{4+p}\bigg)$ is equal to 

  1. $\log_416$
  2. $\log_68$
  3. $\log_616$
  4. $\log_28$
in Quantitative Aptitude retagged by
13.4k points
217 views

1 Answer

0 votes
0 votes
Let $p= \log_{12} 81\implies \log_{12}3^4$

$\implies p=4 log_{12}3$

$\implies log_{12}3=\frac{p}{4} \qquad\dots\dots(i)$

Now $3 \bigg(\frac{4-p}{4+p} \bigg) = 3 \bigg(\frac{1-\frac{p}{4}}{1+\frac{p}{4}} \bigg)$

$\implies 3 \bigg(\frac{1-\log_{12}3}{1+log_{12}3}\bigg)$

$\implies 3 \bigg(\frac{\log_{12}12-\log_{12}3}{log_{12}12+log_{12}3}\bigg)$

$\implies 3 \bigg(\frac{\log (\frac{12}{3})}{\log (12*3)}\bigg)$

$\implies 3 \frac{\log 4}{\log 36}$

$\implies 3\log_{36}4=log_68$

Option $(B)$ is correct.
4.7k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true