in Quantitative Aptitude edited by
166 views
2 votes
How many numbers with two or more digits can be formed with the digits $1,2,3,4,5,6,7,8,9$, so that in every such number, each digit is used at most once and the digits appear in the ascending order?
in Quantitative Aptitude edited by
by
12.8k points 250 1881 2459
166 views

1 Answer

1 vote

Given that, the digits $:1,2,3,4,5,6,7,8,9 $

We know that, the number of ways to pick $k$ unordered elements from an $n$ element set $ = \;^{n}C_{k} = \frac{n!}{k!(n-k)!} $

After selecting the number from the given digits, there is only one way to arrange it.

So, the total number of ways $ = \;^{9} C_{2} + \;^{9} C_{3} + \;^{9} C_{4} + \dots + \;^{9} C_{9} \quad \longrightarrow (1)$

We know that, $^{n} C_{0} + \;^{n} C_{1} + \;^{n} C_{2} + \dots + \;^{9} C_{n} = 2^{n}$

Here,  $^{9}C_{0} + \;^{9}C_{1} + \;^{9} C_{2} + \;^{9} C_{3} + \;^{9} C_{4} + \dots + \;^{9} C_{9} = 2^{9}$

 $\Rightarrow \; ^{9} C_{2} + \;^{9} C_{3} + \;^{9} C_{4} + \dots + \;^{9} C_{9} = 2^{9} – \;^{9}C_{0} - \;^{9}C_{1}$

From the equation $(1),$ we get

$\therefore$ The total number of ways $ = 2^{9}  –   \;^{9}C_{0} – \;^{9}C_{1}$

$\quad = 512 – \frac{9!}{0! \cdot 9!} – \frac{9!}{1! \cdot 8!} $

$\quad = 512 – 1 – \frac{9 \times 8!}{1! \cdot 8!} $

 $\quad = 512 – 1 – 9 $

$\quad = 512 – 10 $

$\quad  = 502 \; \text{ways}.$

Correct Answer $: 502$

$ \textbf{PS}:\text{Important Properties:}$

  • $n! = n(n-1)(n-2) \dots 1 = n(n-1)!$
  • $0! = 1 $
  • $1! = 1 $
  • $ ^{n}C_{n} = \frac{n!}{n! \; 0!} = 1 $
  • $ ^{n}C_{0} = \frac{n!}{0! \; n!} $
  • $ ^{n}C_{1} = \frac{n!}{1!(n-1)!} = \frac{n(n-1)!}{1!(n-1)!} = n $
edited by
by
4k points 3 6 24
Answer:

Related questions

Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true