in Quantitative Aptitude edited by
227 views
2 votes
2 votes

In an examination, the maximum possible score is $\text{N}$ while the pass mark is $45\%$ of $\text{N}$. A candidate obtains $36$ marks, but falls short of the pass mark by $68\%$. Which one of the following is then correct?

  1. $\text{N} \leq 200$
  2. $243\leq \text{N} \leq 252$
  3. $\text{N} \geq 253$
  4. $201 \leq \text{N} \leq 242$
in Quantitative Aptitude edited by
13.4k points
227 views

1 Answer

1 vote
1 vote

Given that,

  • In an examination,the maximum possible score $ = \text {N}$
  • The passing exam score in this examination $ = \text {N} \times 45 \%$

A candidate obtain $36$ marks, but falls short of the pass marks by $ 68 \%.$ Then,

$ \text {N} \times 45\% \times (100\%-68\%)=36$

$ \Rightarrow \text {N} \times 45\% \times 32\% =36 $

$ \Rightarrow \text {N} \times \frac {45}{100} \times \frac {32}{100} = 36$

$ \Rightarrow \text {N} = 250$


We can also do that in this way,

$36 + 68\% (\text{N} \times 45\%) = \text{N} \times 45\%$

$\Rightarrow 36 + \frac{68}{100} \left(\frac{45\text{N}}{100}\right) = \frac{45\text{N}}{100}$

$\Rightarrow 36 + \frac{68}{100} \left(\frac{45\text{N}}{100}\right) -\frac{45\text{N}}{100} = 0$

$\Rightarrow \frac{45\text{N}}{100} \left( \frac{68}{100} – 1 \right) = -36$

$\Rightarrow \frac{45\text{N}}{100} \left( \frac{-32}{100} \right) = -36$

$\Rightarrow \frac{45\text{N}}{100} \left( \frac{32}{100} \right) = 36$

$\Rightarrow \frac{45\text{N}}{100} \left( \frac{8}{100} \right) = 9$

$\Rightarrow 40\text{N} = 100 \times 100$

$\Rightarrow \text{N} = \frac{1000}{4} = 250$

$\therefore $ The maximum score is in between $: 243\leq \text{N}\leq 252.$  

Correct Answer $: \text {B}$

edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true