in Quantitative Aptitude recategorized by
528 views
1 vote
1 vote

Consider the set $S = \{2, 3, 4, \dots , 2n+1\} $ where $n$ is a positive integer larger than $2007.$ Define $\text{X}$ as the average of the odd integers in $S$ and $\text{Y}$ as the average of the even integers in $S$. What is the value of $\text{X-Y}?$

  1. $0$
  2. $1$
  3. $n/2$
  4. $n+1/2n$
  5. $2008$
in Quantitative Aptitude recategorized by
13.4k points
528 views

1 Answer

1 vote
1 vote
Best answer

$Y=\frac{2+4+6+8+..+2n}{n}$

$X=\frac{3+5+7+..+(2n+1)}{n}$

$X=\frac{(2+1)+(4+1)+(6+1)+..+(2n+1)}{n}$

$X=\frac{2+4+6+8..+2n}{n}+\frac{1+1+1+1+..+n\ times}{n}$

$X=\frac{2+4+6+8..+2n}{n}+\frac{n}{n}$

$X=Y+1$

X-Y = Y+1-Y = 1

 

Hence,Option(2)1  is the correct choice.

selected by
11.1k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true