in Quantitative Aptitude edited by
90 views
2 votes
2 votes

Let $ABCDEF$ be a regular hexagon with each side of length $1$ cm. The area (in sq cm) of a square with $AC$ as one side is 

  1. $3\sqrt{2}$
  2. $3$
  3. $4$
  4. $\sqrt{3}$
in Quantitative Aptitude edited by
by
13.2k points 272 2046 2467
90 views

1 Answer

1 vote
1 vote

Let's first draw the diagram.



$\text{ABCDEF}$ is a regular hexagon.

So, each angle in the hexagon $= (\frac{n-2}{n})\times180^\circ$ ,  where $n=$number of sides

$\qquad  \qquad = \left(\frac{6-2}{6}\right)\times180^\circ = \left(\frac{4}{6}\right)\times180^\circ = 120^\circ$

Now,  $\frac{AP}{AB}= \cos 30^\circ$

$\Rightarrow \dfrac{\frac{AC}{2}}{1}=\frac{\sqrt{3}}{2}$

$\Rightarrow \frac{AC}{2}=\frac{\sqrt{3}}{2}$

$\Rightarrow \boxed{AC=\sqrt{3}\;\text{cm}}$

$\therefore$  The area of a square with $AC$ as one side$= (AC)^{2}= (\sqrt{3})^{2}=3\;\text{cm}^{2}.$

Correct Answer $:\text{B}$

edited by
by
7.7k points 3 8 30
Answer:

Related questions

Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true