111 views

If three sides of a rectangular park have a total length $400$ ft, then the area of the park is maximum when the length (in ft) of its longer side is

1. $299$
2. $200$
3. $201$
4. $399$

## 1 Answer

Let the one side be $L$ ft, and the other side be $B$ ft.

Let's draw the diagram for a better understanding.

Given that,  $L+2B=400$

$\Rightarrow 2B=400-L$

$\Rightarrow \boxed{B=\frac{(400-L)}{2}}$

Area of rectangle $A=L \ast B$

$\Rightarrow A=\frac{L\ast(400-L)}{2}$

$\Rightarrow A=200L-\frac{L^{2}}{2}$

The area is maximum when differentiation of $A$ is zero.

$\Rightarrow 200-\frac{2L}{2}=0$

$\Rightarrow 400-2L=0$

$\Rightarrow 2L=400$

$\Rightarrow \boxed{L=200\;\text{ft}}$

And, $B=\frac{400-200}{2}$

$\Rightarrow B = \frac{200}{2}$

$\Rightarrow\boxed{B = 100\;\text{ft}}$

$\therefore$ The length of the longer side is $200\;\text{ft}.$

Correct Answer $:\text{B}$

by
7.7k points 3 8 30
Answer:

0 votes
0 answers
1
145 views
1 vote
1 answer
2
123 views
1 vote
1 answer
3
136 views
1 vote
1 answer
4
144 views
1 vote
1 answer
5
108 views