retagged by
537 views

1 Answer

1 votes
1 votes
Given that, $\dfrac{1}{a}+\dfrac{1}{b} = \dfrac{1}{9}\;; \;a,b\in \mathbb{Z}^{+} $ and $a\leq b$

$\Rightarrow \dfrac{a+b}{ab} = \dfrac{1}{9}$

$\Rightarrow 9a+9b = ab$

$\Rightarrow 9a+9b-ab = 0$

$\Rightarrow ab-9a-9b = 0$

$\Rightarrow ab-9a-9b+81 = 81$

$\Rightarrow (a-9)(b-9) = 81$     

We can factorize $81$ such that $a-9\leq b-9 \Rightarrow \boxed{a\leq b}$     

$ \qquad \qquad \begin{array} {ccc} \underline{a-9}& \leq  & \underline{b-9} \\  1 & & 81 \\ 3 & & 27 \\ 9 &  & 9\end{array}$

$\therefore$ Only three pairs are possible.

Correct Answer $:\text{A}$
edited by
Answer:

Related questions

2 votes
2 votes
2 answers
1
go_editor asked Mar 16, 2020
712 views
If $9^{\left ( x-1/2 \right )}-2^{\left ( 2x-2 \right )}=4^{x}-3^{\left (2x-3 \right )}$, then $x$ is$3/2$$2/5$$3/4$$4/9$
1 votes
1 votes
1 answer
2
go_editor asked Mar 13, 2020
456 views
If $a, b, c$ and $d$ are integers such that $a+b+c+d=30$ , then the minimum possible value of $( a-b )^{2}+( a-c )^{2}+( a-d)^{2}$ is $1$$2$$5$$6$
1 votes
1 votes
1 answer
4
1 votes
1 votes
1 answer
5