in Quantitative Aptitude edited by
89 views
0 votes
0 votes

The figure shows a circle of diameter $AB$ and radius $6.5$ cm. 

If chord $CA$ is $5$ cm long, find the area of $\triangle ABC$. __________

in Quantitative Aptitude edited by
by
13.2k points 272 2046 2467
89 views

1 Answer

0 votes
0 votes

 Given that,

  •  $\text{AB}=2\ast6.5=13$ cm.
  •  $\text{CA}=5$ cm 

We know that, Angle in a semicircle is a right angle. So $\angle ACB=90^\circ$.

Now, we can apply the Pythagorean theorem, in $\triangle ACB$.

$(AB)^{2}=(CA)^{2}+(CB)^{2}$

$\Rightarrow (13)^{2}=(5)^{2}+(CB)^{2}$

$\Rightarrow (CB)^{2}=169-25$

$\Rightarrow (CB)^{2}=144$

$\Rightarrow \boxed{CB=12\text{cm}}$

$\therefore$ The area of $\triangle ABC=\frac{1}{2}\times Base\times Height$

                                          $=\frac{1}{2}\times 5\times 12$

                                          $=30 \text{cm}^{2}$

Correct Answer :$30$

edited by
by
7.7k points 3 8 30

Related questions

Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true