# CAT 2016 | Question: 90

1 vote
118 views

The points of intersection of three lines $2\text{X} + 3\text{Y} – 5 = 0, 5\text{X} – 7\text{Y} + 2 = 0$ and $9\text{X} – 5\text{Y} – 4= 0$

1. form a triangle
2. are on lines perpendicular to each other
3. are on lines parallel to each other
4. are coincident

edited

1 vote

Given that,

• $2x+3y-5=0 \longrightarrow(1)$
• $5x-7y+2=0 \longrightarrow(2)$
• $9x-5y-4=0 \longrightarrow(3)$

Take equation $(1)$ and $(2).$

$2x+3y-5=0 \longrightarrow(1)\times7$

$5x-7y+2=0 \longrightarrow(2)\times3$

$14x+21y-35=0$

$15x-21y+6=0$

----------------------------------

$29x-29=0$

$\boxed{x=1}$

Put the value of $’x’$ in equation $(1)$,we get.

$2(1)+3y-5=0$

$\Rightarrow 3y=3$

$\Rightarrow \boxed{y=1}$

Take equation $(1)$ and $(3).$

$2x+3y-5=0 \longrightarrow(1)\times5$

$9x-5y-4=0 \longrightarrow(3)\times3$

$10x+15y-25=0$

$27x-15y-12=0$

----------------------------------

$37x-37=0$

$\Rightarrow\boxed{x=1}$

Put the value of $’x’$ in equation $(3)$,we get.

$9(1)-5y-4=0$

$\Rightarrow -5y+5=0$

$\Rightarrow \boxed{y=1}$

Take equation $(2)$ and $(3).$

$5x-7y+2=0 \longrightarrow(2)\times5$

$9x-5y-4=0 \longrightarrow(3)\times7$

$25x-35y+10=0$

$63x-35y-28=0$

----------------------------------

$-38x+38=0$

$\Rightarrow\boxed{x=1}$

Put the value of $’x’$ in equation $(2)$,we get.

$5(1)-7y+2=0$

$\Rightarrow -7y+7=0$

$\Rightarrow \boxed{y=1}$

We can say that, these three lines meet at point $M(x,y)=M(1,1).$

$\therefore$ These three lines are coincident.

Correct Answer $;\text{D}$

10.1k points 4 8 30
edited

## Related questions

1
68 views
The vertices of a triangle are $(0,0), (4,0)$ and $(3,9).$ The area of the circle passing through these three points is $\frac{14 \pi}{3}$ $\frac{12 \pi}{5}$ $\frac{123 \pi}{7}$ $\frac{205 \pi}{9}$
2
51 views
The points $(2,1)$ and $( – 3, – 4)$ are opposite vertices of a parallelogram. If the other two vertices lie on the line $x + 9y + c = 0,$ then $\text{c}$ is $12$ $14$ $13$ $15$
3
164 views
Direction for questions: Answer the questions based on the following information. In a locality, there are five small cities: $\text{A, B, C, D}$ and $\text{E}$ ... ration shop is to be set up within $3 \text{ km }$ of each city, how many ration shops will be required? $1$ $2$ $3$ $4$
1 vote
4
241 views
If $\text{ABCD}$ is a square and $\text{BCE}$ is an equilateral triangle, what is the measure of $\angle \text{DEC}?$ $15^{\circ}$ $30^{\circ}$ $20^{\circ}$ $45^{\circ}$
1 vote
From a circular sheet of paper with a radius $20\:\text{cm}$, four circles of radius $5\:\text{cm}$ each are cut out. What is the ratio of the uncut to the cut portion? $1:3$ $4:1$ $3:1$ $4:3$