in Quantitative Aptitude edited by
184 views
0 votes
0 votes

$\text{PQRS}$ is a square. $\text{SR}$ is a tangent (at point $\text{S})$ to the circle with centre $\text{O}$ and $\text{TR = OS}$. Then the ratio of area of the circle to the area of the square is 

                                              

  1. $\pi /3$
  2. $11/7$
  3. $3 /\pi$
  4. $7/11$
in Quantitative Aptitude edited by
13.4k points
184 views

1 Answer

0 votes
0 votes

Given that the figure.

Let the radius of a circle be $r$ cm.

DIAGRAM

The triangle $ \triangle \; \text{OSR}$ is right-angle triangle. so we can apply the Pythagorean theorem.

$\text{(Hypotenuse)}^{2} = \text{(Perpendicular)}^{2} + \text{(Base)}^{2}$

$\Rightarrow \text{(OR)}^{2} = \text{(SR)}^{2} + \text{(SO)}^{2}$

$\Rightarrow \text{(2r)}^{2} = \text{(SR)}^{2} + r^{2}$

$\Rightarrow 4r^{2} – r^{2} = \text{(SR)}^{2} $

$\Rightarrow \text{(SR)}^{2}  = 3r^{2} $

$\Rightarrow  \boxed{\text{SR} = \sqrt{3} \; r \; cm }$

Now, we can calculate the area of circle and square.

  • Area of circle $ = \pi \; r^{2} \;  cm^{2}$
  • Area of square $ = 3r^{2} \;  cm^{2}$

$\therefore$ The required ratio $ = \pi \; r^{2} : 3r^{2} =  \pi : 3$

Correct Answer $: \text{A}$

10.3k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true