in Quantitative Aptitude edited by
224 views
0 votes
0 votes

The set of all positive integers is the union of two disjoint subsets$:\left \{ f\left ( 1 \right ),f\left ( 2 \right ), \dots, f\left ( n \right ), \dots \right \}$ and $\left \{ g\left ( 1 \right ),g\left ( 2 \right ), \dots, g\left ( n \right ), \dots \right \}$, where $f\left ( 1 \right )< f\left ( 2 \right )< \dots < f \left ( n \right ) \dots,$ and $g\left ( 1 \right )< g \left ( 2 \right )< \dots < g\left ( n \right ) \dots,$ and$g\left ( n \right )= f\left ( f\left ( n \right ) \right )+1$ for all $n \geq 1$. What is the value of $g\left ( 1 \right )?$ 

  1. $0$
  2. $2$
  3. $1$
  4. Cannot be determined
in Quantitative Aptitude edited by
13.4k points
224 views

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true