in Quantitative Aptitude edited by
0 votes
0 votes

Let $x<0,\:0<y<1,\:z>1$. Which of the following may be false?

  1. $\left (x ^{2} -z^{2}\right )$ has to be positive.
  2. $yz$ can be less than one.
  3. $xy$ can never be zero.
  4. $\left (y ^{2} -z^{2}\right )$ is always negative.
in Quantitative Aptitude edited by
13.4k points

1 Answer

0 votes
0 votes

Given that,

  • $x<0$
  • $0<y<1$
  • $z>1$

Let’s check all of the options.

$A. \; (x^{2} – z^{2})$ has to be positive.

Let’s take $x=-1, z=2$

Now, $(-1)^{2} – (2)^{2}>0$

$\Rightarrow 1-4>0$

$\Rightarrow \boxed{-3>0 \; (False)}$

$B. \; yz can be less than one.


$\Rightarrow \frac{1}{4} \times 2<1$

$\Rightarrow \boxed{\frac{1}{2}<1 \; (True)}$

$C: xy$ can never be zero.

$\Rightarrow xy \ne 0$ 

$\Rightarrow \boxed{xy \ne 0} (True)$ 

$D. \; (y^{2} – z^{2})$ is always negative.

$\Rightarrow y^{2} – z^{2} <0$

Here $y<z$

$\Rightarrow y^{2} < z^{2}$

$\Rightarrow \boxed{y^{2} - z^{2} < 0 (True)Always}$

Correct Answer $:\text{A}$

10.3k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true