retagged by
627 views

1 Answer

0 votes
0 votes

Given that, equation $2x+y = 40$

$\Rightarrow \boxed{y= 40-2x ; x \le y \longrightarrow (1)}$

Put the various values of $x$ in equation $(1),$ and get the number of solutions.

  • $x=1 \Rightarrow y=38$
  • $x=2 \Rightarrow y=36$
  • $x=3 \Rightarrow y=34$
  • $x=4 \Rightarrow y=32$
  • $x=5 \Rightarrow y=30$
  • $x=6 \Rightarrow y=28$
  • $x=7 \Rightarrow y=26$
  • $x=8 \Rightarrow y=24$
  • $x=9 \Rightarrow y=22$
  • $x=10 \Rightarrow y=20$
  • $x=11 \Rightarrow y=18$
  • $x=12 \Rightarrow y=16$
  • $x=13 \Rightarrow y=14$
  • $x=14 \Rightarrow y=12$ $(x \le y)$ Conditions Violated

$\therefore$ The number of solutions of the equation $2x+y=40$ is $13.$

Correct Answer $: 13$

 

Related questions

1 votes
1 votes
1 answer
1
soujanyareddy13 asked Jan 20, 2022
411 views
Consider the pair of equations: $x^{2} – xy – x = 22$ and $y^{2} – xy + y = 34.$ If $x>y,$ then $x – y$ equals$7$$8$$6$$4$
1 votes
1 votes
1 answer
2
soujanyareddy13 asked Sep 17, 2021
591 views
Let $k$ be a constant. The equations $kx + y= 3$ and $4x + ky= 4$ have a unique solution if and only if $|k| \neq 2$$|k| = 2$$k \neq 2$$k= 2$
1 votes
1 votes
1 answer
3
go_editor asked Mar 20, 2020
685 views
Let $a,b,x,y$ be real numbers such that $a^{2}+b^{2}=25,x^{2}+y^{2}=169$, and $ax+by=65$. If $k=ay-bx$, then$k=0$$0< k\leq \frac{5}{13}$$k=\frac{5}{13}$$k \frac{5}{13}$
0 votes
0 votes
1 answer
4
go_editor asked May 5, 2016
1,848 views
If $x$ and $y$ are integers then the equation $5x + 19y = 64$ hasno solution for $x < 300$ and $y < 0$no solution for $x 250$ and $y – 100$a solution for $250 < x < 3...
0 votes
0 votes
0 answers
5