in Quantitative Aptitude edited by
214 views
2 votes
2 votes
If $a_{1}+a_{2}+a_{3}+\dots+a_{n}=3(2^{n+1}-2)$, for every $n\geq 1$, then $a_{11}$ equals ______
in Quantitative Aptitude edited by
13.4k points
214 views

1 Answer

1 vote
1 vote
Given that, $ a_{1} + a_{2} + a_{3} + \dots + a_{n} = 3(2^{n+1} – 2) $

Now, put $ n=11,$ we get

$ a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}+a_{11} = 3(2^{12}-2) $

$ = 3 (4096-2) $

$ = 3 \times 4094 $

$ = 12282 \quad \longrightarrow (1) $

And put $ n=10,$ we get

$ a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10} = 3(2^{11}-2) $

$ = 3 (2048 – 2) $

$ = 3 \times 2046 $

$ = 6138 \quad \longrightarrow (2) $

From  the equation $(1),$ subtract the equation $(2),$ we get

$ a_{11} = 12282 – 6138 $

$ \boxed{a_{11} = 6144} $

Correct Answer $: 6144$
edited by
10.3k points
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true