in Quantitative Aptitude edited by
86 views
2 votes

The number of the real roots of the equation $2\cos (x(x+1))=2^{x}+2^{-x}$ is

  1. $2$
  2. $1$
  3. infinite
  4. $0$
in Quantitative Aptitude edited by
by
12.6k points 245 1789 2436
86 views

1 Answer

1 vote
Given that, $ 2 \cos (x(x+1)) = 2^{x} + 2^{-x}$

$ \Rightarrow 2 \cos (x(x+1)) = 2^{x} + \frac{1}{2^{x}} \quad \longrightarrow (1)$

For any set of non-negative real numbers, the arithmetic mean of the set is greater than or equal to the geometric mean of the set.

Algebraically, this is expressed as follows:

For a set of non-negative real numbers $ a_{1}, a_{2}, a_{3}, \dots, a_{n},$ the following always holds:

$ \boxed {\frac{ a_{1} + a_{2} + a_{3} + \dots + a_{n} }{n} \geq \sqrt[n]{a_{1} a_{2} a_{3} \dots a_{n}}}$

Now, from the equation $(1)$, take the right hand side term,

$ 2^{x} + \frac {1}{2^{x}} \geq 2 \sqrt {2^{x} \cdot \frac {1}{2^{x}}}$

$ \Rightarrow 2^{x} + \frac {1}{2^{x}} \geq 2 $

Put the value in the equation $(1),$ we get

$ 2 \cos (x(x+1)) = 2 \quad \longrightarrow (2)$

$ \Rightarrow \cos (x(x+1)) = 1 $

$ \Rightarrow \cos (x(x+1)) = \cos \; 0^{\circ} $

$ \Rightarrow (x(x+1)) = 0 $

$ \Rightarrow \boxed{x=0\;\text{(or)}\; x = -1}$

Now, put  $x=0,$ in the equation $(1),$ we get

$ 2 \cos (0(0+1)) = 2^{0} + \frac{1}{2^{0}}$

$ \Rightarrow 2  \cos 0 = 1+1$

$ \Rightarrow 2 (1) = 2$

$ \Rightarrow \boxed{2 = 2}$ (Satisfied)

And, put $x=-1,$ in the equation $(1),$ we get

$ 2 \cos (-1(-1+1)) = 2^{-1} + \frac{1}{2^{-1}}$

$ \Rightarrow 2 \cos 0 = \frac{1}{2} + 2$

$ \Rightarrow 2(1) = 2 + \frac{1}{2}$

$ \Rightarrow \boxed{2 \neq \frac{5}{2}}$ ( Not satisfied)

So, only $ \boxed{x=0},$ is the real root of the equation.

Correct Answer $: \text{B}$
ago edited ago by
by
2.8k points 2 5 21
Answer:

Related questions

Ask
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true