in Quantitative Aptitude edited by
291 views
0 votes
0 votes

Functions $g$ and $h$ are defined on $n$ constants, $a_0,a_1,a_2,a_3,...a_{n−1}$, as follows: $g(a_p,a_q)=a\mid p−q\mid$, if $\mid p-q \mid\leq(n-4)  =a_n−\mid p−q\mid$, if $\mid p-q\mid>(n-4)  h (a_p,a_q)=a_k$, where $k$ is the remainder when $p+q$ is divided by $n$.

If $h(a_k,a_m)=a_m$ for all $m$, where $1\leq m < n$ and $0 \leq k < n$, and $m$ is a natural number, find $k$.

  1. $0$
  2. $1$
  3. $n-1$
  4. $n-2$
in Quantitative Aptitude edited by
by
2.4k points
291 views

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true