in Quantitative Aptitude edited by
0 votes
0 votes

If $a= \dfrac{x}{y+z},b= \dfrac{y}{z+y},c= \dfrac{z}{x+y}$, then which of the following statements is/are true?

  1. $\dfrac{b+c-1}{yz}+\dfrac{a+c-1}{xz}+\dfrac{a+b-1}{yx}=1 \\$
  2. $\dfrac{x^{2}}{a(1-bc)}= \dfrac{y^{2}}{b(1-ca)}= \dfrac{z^{2}}{c(1-ab)} \\$
  3. $(a+b)c+(b+c)a+(a+c)b= \dfrac{2(x+y+z)(xy+xz+yz)-6xyz}{(x+y)(y+z)(z+x)}$
  1. I and II
  2. I and III
  3. II and III
  4. None of these
in Quantitative Aptitude edited by
308 points

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true