Aptitude Overflow
0 votes
158 views
Q.How many four-digit numbers, with distinct digits are there such that the sum of the digits of each of these numbers is an odd natural number?
 a.2160  b.2090  c.1880  d.2376
asked in Quantitative Aptitude by (1.4k points) 2 5 9 | 158 views

1 Answer

+2 votes
Best answer

 

Even number set { 0, 2, 4, 6, 8 }   Odd number set  { 1, 3, 5, 7, 9 } 

The answer can be achieved by considering 2 cases

1. 3 digits are even and 1 digit is odd

2. 3 digits are odd and 1 digit is even

1st case: 

  3 digits are even and 1 digit is odd 

      here 2 cases are possible     

  • 2 non-zero even digits and 1 digit = 0 and 1 odd digit​​​​​​

      OR

  • 3 non-zero even digit and 1 odd digits ​​​​​​​

---------------------------------------------------------------

  • 2 non-zero even digits and 1 digit = 0 and 1 odd digit​​​​​​

           Choosing 2 non-zero even digit = 4C2 = 6

           Choosing 1 odd digit = 5C1 = 5

           Arranging all 4 digits = 3 × 3 × 2 × 1 = 18

           The no. of ways will be = 18 * 6 * 5 = 540    [the numbers can't be started with 0] 

  • 3 non-zero even digit​​​​​​​ and ​​​​​​​1 odd digits ​​​​​​​

           Choosing 3 non-zero even digit = 4C3 = 4

           Choosing 1 odd digit = 5C1 = 5

           Arranging all 4 digits = 4! = 24

           The no. of ways will be = 24 * 5 * 4 = 480

The total no. of ways of 1st case = 540 + 480 = 1020

Now the 2nd case

3 digits are odd and 1 digit is even

  • 1 digit = 0​​​​​​​ and 3 odd digits 

       OR

  • 1 non-zero even digit​​​​​​​ and 3 odd digits 

-----------------------------------------------------

  • 1 digit = 0​​​​​​​ and 3 odd digits 

           Choosing 3 odd digits = 5C3 = 10
           Arranging all 4 digits = 3 × 3 × 2 × 1 = 18

           The no. of ways will be = 18 * 10 = 180 

  • 1 non-zero even digit​​​​​​​ and 3 odd digits 

           Choosing 1 non-zero even digit = 4C1 = 4

           Choosing 3 odd digit = 5C3 = 10
           Arranging all 4 digits = 4! = 24

           The no. of ways will be = 24 * 4 * 10 = 960

The total no. of ways of 2nd case = 180 + 960 = 1140

The total no. of ways of 1st case + The total no. of ways of 2nd case = 1020 + 1140 = 2160 ways

answered by (5.7k points) 7 30 142
edited by
0
thanks

Related questions

0 votes
1 answer
5
asked Jan 6, 2017 in English Language by LavTheRawkstar (24 points) 1 2 4 | 82 views
2,826 questions
1,252 answers
488 comments
40,538 users