Aptitude Overflow
+3 votes
118 views

The largest value of $\min (2 + x^{2} , 6 - 3x)$ when $x > 0$ is

  1. $1$ 
  2. $2$ 
  3. $3$ 
  4. $4$
asked in Quantitative Aptitude by (7.7k points) 52 168 469 | 118 views
0
what is mm here? is it minimum ?
+1
it is min. Corrected now

2 Answers

+3 votes
Best answer

For minimum, 

equating

$2 + x2 = 6 - 3x$

$x2 + 3x - 4 = 0$

$x = 1, -4$

Since $x > 0,$ so value occurs at $x = 1.$

At $x = 1$

$2+x^{2}=3$

$6 - 3x = 3.$

it means the largest value of the function  $min( 2 + x^2 , 6 − 3x)$

                                                                           $min( 3, 3)$ is $3$

The correct option is C.

answered by (2.6k points) 2 8 29
selected by
+2 votes

PUT THE DIFFERENT VALUE OF X

​​​​​​​

answered by (532 points) 2 7 24
edited by

Related questions

2,828 questions
1,258 answers
494 comments
40,567 users