in Logical Reasoning edited by
0 votes
0 votes

Answer the question based on the following information.

A road network (shown in the figure below) connects cities A, B, C and D. All road segments are straight lines. D is the mid-point on the road connecting A and C. Roads AB and BC are at right angles to each other with BC shorter than AB. The segment AB is $100 \; \text{km}$ long.

Ms X and Mr Y leave A at $8.00 \; \text{a.m.,}$ take different routes to city C and reach at the same time. X takes the highway from A to B to C and travels at an average speed of $61.875$ kmph. Y takes the direct route AC and travels at $45$ kmph on segment AD. Y’s speed on segment DC is $55$ kmph.

What is the average speed of Y?

  1. $47.5$ kmph
  2. $49.5$ kmph
  3. $50$ kmph
  4. $52$ kmph
in Logical Reasoning edited by
13.4k points

1 Answer

4 votes
4 votes

Firstly kindly have a look on this link 
here i calculated the value of AD=CD=BD=52.5 km 

theorem used : "Mid point of hypotenous is equidistance from all vertices . "

But for calculating avg speed you dont require the exact value of AD and BD . 
So Average speed of Y =      (AD+BD)
                                     ----------------------------  ; where (AD=BD= x km)
                                      (AD/45 +BD/55)

= 2*45*55/ 100 =49.5 km/h

Option (B) is correct .

2.7k points

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true