Aptitude Overflow
0 votes
117 views

There are 11 alphabets A, H, I, M, O, T, U, V, W, X, Y, Z. They are called symmetrical alphabets. The remaining alphabets are known as asymmetrical alphabets.

How many three-lettered words can be formed such that at least one symmetrical letter is there?

  1. 12870
  2. 18330
  3. 16420
  4. None of these
in Quantitative Aptitude by (11.4k points) 170 609 1442 | 117 views

1 Answer

0 votes

There are a total of 11 symmetric letters, and therefore, 15 asymmetric letters.

Method 1:  Total number of words possible (no repetition):
                   26*25*24 = 650*24 = 15600

Total number of words possible with only asymmetric letters:
15*14*13 = 210*13 = 2730

Total number of words with at least one symmetric letter:
15600 - 2730 = 12870

Method 2 : 

case1 : Total combination possible with 1 symmetrical and 2 asymmetrical :

The symmetrical number can be in any one of the digits. So, totally 3 possibilities.

Hence, the total combination = 11* 15 * 14 * 3 = 6930

 

case 2: Total combination possible with 2 symmetrical and 1 asymmetrical :

The asymmetrical number can be in any one of the digits. So, totally 3 possibilities.

Hence, the total combination = 11* 10 * 15 * 3 = 4950

 

case 3: Total combination possible with 3 symmetrical:

All the letters symmetrical Hence, the total combination = 11* 10*9 = 990

Hence, total possible  combination= 6930 + 4950 + 990 = 12870.

 

Hence,(A)12870 is the Answer.

by (11k points) 7 12 98

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
4,628 questions
1,567 answers
538 comments
44,483 users