in Quantitative Aptitude edited by
278 views
0 votes
0 votes

Answer the following question based on the information given below.
For three distinct real numbers $x, y$ and $z,$ let

  • $f(x, y, z) = \min(\max(x, y), \max(y, z), \max(z, x))$
  • $g(x, y, z) = \max(\min(x, y), \min(y, z), \min(z, x))$
  • $h(x, y, z) = \max(\max(x, y), \max(y, z), \max(z, x))$
  • $j(x, y, z) = \min(\min(x, y), \min(y, z), \min(z, x))$
  • $m(x, y, z) = \max(x, y, z)$
  • $n(x, y, z) = \min(x, y, z)$

Which of the following expressions is indeterminate?

  1. $(f(x, y, z) – h(x, y, z))/(g(x, y, z) – j(x, y, z))$
  2. $(f(x, y, z) + h(x, y, z) + g(x, y, z) + j(x, y, z))/ (j(x, y, z) + h(x, y, z) – m(x, y, z) – n(x, y, z))$
  3. $(g(x, y, z) – j(x, y, z))/(f(x, y, z) – h(x, y, z))$
  4. $(h(x, y, z) – f(x, y, z))/(n(x, y, z) – g(x, y, z))$
in Quantitative Aptitude edited by
13.4k points
278 views

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true