276 views

0 votes

**Answer the following question based on the information given below.**

For three distinct real numbers $x, y$ and $z,$ let

- $f(x, y, z) = \min(\max(x, y), \max(y, z), \max(z, x))$
- $g(x, y, z) = \max(\min(x, y), \min(y, z), \min(z, x))$
- $h(x, y, z) = \max(\max(x, y), \max(y, z), \max(z, x))$
- $j(x, y, z) = \min(\min(x, y), \min(y, z), \min(z, x))$
- $m(x, y, z) = \max(x, y, z)$
- $n(x, y, z) = \min(x, y, z)$

Which of the following is necessarily greater than $1?$

- $(h(x, y, z) – f(x, y, z))/j(x, y, z)$
- $j(x, y, z)/h(x, y, z)$
- $f(x, y, z)/g(x, y, z)$
- $(f(x, y, z) + h(x, y, z) – g(x, y, z))/j(x, y, z)$